您现在的位置:佛教导航>> 五明研究>> 因明>>正文内容

悖论趣话(一)

       

发布时间:2009年04月11日
来源:不详   作者:不详
人关注  打印  转发  投稿

一、徘徊的幽灵
  ——悖论(代序)
  “一个幽灵,共产主义的幽灵,在欧洲徘徊。”这是《共产党宣言》的开场白。这幽灵震撼了整个旧的世界,一切旧的势力为驱逐它而结成了同盟,而新的势力则在其鼓舞下开创了一个崭新的世界。在2000多年来的人的思维发展史中,也有一个幽灵不断缠绕着人们,这就是引起众多哲人的注意,并使许多人为之倾其毕生心血的难题——悖论。“悖论”的“悖”字,据《辞源》解:“‘悖’,背理也,乱也,逆也,惑也。”故“悖论”也称作“逆论”、“反论”。这个词的意义很丰富,它包括一切与人的直觉或日常经验相抵触的理论、观点或论断。悖论主要有以下几种表现形式:(l)一种论断看似谬误,但实际上却是对的(佯谬);(2)一种论断看似正确,但实际上却是错的(似是而非的理论);(3)某一理论体系中,从某些看似正确的公理出发,根据一系列的无懈可击的推理,却导致逻辑上的自相矛盾或矛盾循环。在逻辑和数学中,人们所说的“悖论”,主要指第三种形式,即自我矛盾的循环。最古老的悖论要算“说谎者悖论”了。
  据传说,公元前6世纪,古希腊的克里特岛上住着一个叫埃皮门尼德的人。幼年时他与一些小朋友到山中玩耍,偶然误入一个山洞,在洞中迷迷糊糊地睡着了。但这一觉他竟然睡了57年,待他醒来时,已过了“耳顺之年”。他发现自己已成了一个学者,熟谙哲学和医学,成为岛上的“先知”。据《圣经》记载,作为克里特岛上“先知”的埃皮门尼德曾轻蔑地说过这样一句话:“克里特岛人都是说谎者。”
  如何理解这句话呢?如果这句话是真的,即克里特岛人真的都是说谎者,而既然埃皮门尼德也是克里特岛人的一员。那么,他也是个说谎者。假如“说谎者”的含义是指不说一句真话的人,则显然可得出,这句话是谎话,即是假的,这显然是个矛盾。但是,这并不能使埃皮门尼德陷入困境,因为可以设定此话为谎话,但要具备一个条件,即克里特岛上其他任何人或埃皮门尼德本人除此之外还说过真话,而说过真话的人就不算作“说谎者”。这样,埃皮门尼德的这句话就成为谎话。但是,这种通过偶然的事实来解决悖论的方法,从逻辑上说是不能令人满意的。
  在印度因明学(逻辑学)中也有与此类似的例子。因明学有一条立论的基本原则,就是不能“自语相违”。例如,“一切语皆妄(虚假)”就是自语相违。有一个叫神泰的因明家评论道:
  说“一切语皆妄”的人,你口中的这句话是否真实呢?
  假如说是真的,那么,为什么说“一切语皆妄”呢?如果说你这句话是虚假(妄)的,那么,应该承认一切语皆实。
  即使你补充一句,说“除我所语,其余一切语皆妄”,也于事无补。因为有个第二者听了你这句补救的话后,指出:“你这句补充的话是实话。”那么,第二者的话是实,还是妄?如果第二者的话是妄,那说明你补充的话虚假;如果第二者的话为实,那你又有何理由说“除我所语,其余一切语皆妄”呢?
  假定你再补充一句:“除了我语及这个评论我的第二者的话真实以外,其余所语皆妄。”这时又会有第三人接着评论说:“这第二个人的话也是真实的。”那么,第三个人的话是实,还是妄?
  同理,如果设定为假,那么,第二个人及第一个人说的话就不对了;而如果第三个人的话是真的,又怎么能说除我及第二个人所语,其余皆妄呢?
  同样,第四人、第五人……依次类推,以至无穷。你说“一切语皆妄”为真,而“一切语皆妄”也是“一切语”的一句,因此又推出“一切语皆妄”为假。你看到推出矛盾,就作一补充,说除你所语之外,一切语皆妄,但这样就会出现无穷多个例外,因而,例外也就不成其为例外。
  可以看出,神泰的这一连串推理,除了从“一切语皆妄”虚假推出“一切语皆实”不合逻辑之外,其余的推论都是正确的。从逻辑上讲,从“一切语皆妄”中,只能推出“有些语为实”。
  我国古代的经典《墨经》中也曾对这种自相矛盾作过论述。《墨经》指出:“言尽悖。”意思是说,断定一切的命题会导致矛盾,如“任何东西我都不信。”
  严格说来,上述这些论断并不是真正的悖论。因为尽管由假设其真可导致矛盾,但我们可据反证法证明其为假,而设定其假并不能推出矛盾。
  公元前4世纪,古希腊麦加拉哲学派的欧布利德斯对上述“说谎者悖论”作了修正。据说,他最初表述的是:那个说自己说谎的克里特岛人说谎吗?这是一个悖论。后来,欧布利德斯又把“说谎者悖论”表述为:“我正在说的是谎话。”这才是真正严格的悖论。因为假如这句话是真话,即“我真的在说谎话”。但我说的只有这一句话,因此,“我正在说的这句话是谎话”必是谎话,即为假;假如这句话为假,即我并非正在说谎话,那么,说的必然是真话,因此,这句话为真。无论采取哪种假设,都无法自圆其说。说它真,则推出假,说它假,则又推出真。真→假→真……陷入无穷的循环当中。
  古希腊哲学家还经常讲一个鳄鱼的故事:
  一位母亲抱着心爱的孩子到河边洗衣服。一条鳄鱼偷偷地从旁边游近她,从她的怀抱中把孩子抢走。母亲非常痛苦,哭哭啼啼地央告鳄鱼把孩子还给她。
  “好吧,我可以把孩子还给你,但有一个条件。”鳄鱼说。
  “什么条件我都答应,只要你能还我孩子。”
  “是这样,你猜一猜我会不会吃掉你的孩子?如果你答对了,我就把孩子毫不伤害地还给你。答不对嘛,那我就把他吃掉了。”
  母亲思索片刻回答说:“啊!你是要吃掉我的孩子的。”
  “呣……我怎么办呢?如果我把孩子交还给你,你就说错了,我应该把他吃掉。”鳄鱼高兴起来,“好了,这样我就不把他还给你了。”
  “可是,这样你必须把孩子还给我,因为如果你吃了我的孩子,我就说对了。你答应我说对了就把孩子还给我的。”
  愚蠢的鳄鱼懵了,结果把孩子还给了母亲,母亲抱起孩子就跑掉了。
  “唉,要是她说我要还给她孩子,我可就美餐一顿了。”鳄鱼很遗憾地说道。
  仔细地琢磨一下这个著名的“鳄鱼悖论”,你会发现,这位母亲是多么聪明。她对鳄鱼说:“你要吃掉我的孩子。”这样,无论鳄鱼怎么做都会与其允诺相矛盾。如果把孩子还给母亲,她的话就是错的,那么,就应把孩子吃掉,即不还给母亲;而如果不还给母亲,母亲的话就是对的,那么,就应该还给母亲。还给→不还给→还给→不还给……鳄鱼陷入了无穷的循环中,无法从中摆脱出来而不违背自己的允诺。
  如果不是这样,假如母亲换个说法:“你要把孩子还给我。”那么,鳄鱼就不用感到困惑了。它既可以交回孩子,也可以把他吃掉。如果它交回孩子,母亲的话就说对了,鳄鱼遵循了自己的诺言;如果它聪明的话,也可把孩子吃掉,这时,母亲的话是错的,鳄鱼也遵循了自己的诺言。
  对于这种无限循环的悖论,美国人霍夫斯塔特给了它一个生动的名字:“一步即成的怪圈。”当代杰出画家埃舍尔曾用版画形象地说明了这种怪圈。图1的名字叫《瀑布》。在图中,一条瀑布倾泻而下,水花四起,还推动了水轮。汇集到一个大池子中的水顺着水渠哗哗地向下流去,一级一级下降。突然,水又流回到瀑布口!真是不可思议!可是在画面上却表现得明明白白,天衣无缝。图2的名字叫《上升与下降》。在冰冷阴森的教堂顶上,僧侣们排成两队向前走。其中一队总是沿着楼梯向上走,另一队总是往下走。可令人不解的是,他们走的却是同样的楼梯,并且不断地回到原来的出发点。
  古代的一些人认为,这种怪圈“纯系文字游戏”,于是只把它们当做茶后饭余的笑料而已。然而,在历史发展的每一阶段中,这种怪圈总像幽灵一样神秘地出现在人们的思维中,令众多哲人为之烦恼。说它神秘,是因为至今没有能使大家信服的解释,也没有一种公认为完善的驱除它的方法。任何严谨的逻辑学家都会认识到这种怪圈所带来问题的严重性,因为在怪圈面前,形式逻辑的最基本规律同一律、不矛盾律、排中律完全失效。形式逻辑规定:一命题要么真,要么假,不能既真又假,”也不能不真不假。但对怪圈而言,一说它真,即可推知假,说它假,则又可推出真,真假无限循环。因此,著名数学家哥德尔说,这个问题不解决,形式逻辑就会破产,整个人类思维的大厦就会崩溃!
  在历史上也有一些哲学家、逻辑学家和数学家试图对悖论进行解释。古代圣哲亚里士多德在其《论辩篇》和《形而上学》中解释过说谎者悻论,古希腊斯多葛哲学派的代表克里西波斯为解释说谎者悖论写了六部书。希腊诗人柯斯的裴勒塔潜心研究悖论,把身体搞得十分瘦弱。据说他的鞋中常带着铅,以免被大风吹跑,最后竟因操劳过度,一命呜呼,这可说是悖论的第一个“殉道者”了。中世纪的哲人们把悖论称为“不可解命题”,并对此进行了更加深入的研究。他们在说谎者悖论的基础上发现了一些新的悖论,并提出解决悖论的15种方法。集合论中悖论的出现,更引起人们对悖论的重视。人们又发现了理查德悖论、罗素悖论、格里灵悖论等一些著名的悖论,并提出了解决悖论的新方法。
  悖论在历史上曾引起三次数学危机,导致了人们对思维层次的深入剖析,促使一些新学科的出现,因此,成为当代逻辑学家、数学家、语言学家和哲学家们共同的热门话题。
  二、现在的我与过去的我--形式逻辑的根本大法
  古希腊的“晦涩哲人”赫拉克利特有一句著名的话:“踏入同一条河里的人们,流过他们的水是不同的,永远是不同的。”这句话是说,河水在不停地流动,当人第二次踏入这条河流时,接触的已不是原来的水流,而是变化了的新的水流。他用这句话说明,世界上的万事万物就像奔腾不息的河流,都处于不停的流动变化之中,永远凝固的东西是不存在的。有些事物的变化是明显的,人们可以直接感受到。“眼前红日又西斜,疾似下坡东。”“三五明月满,四五蟾兔缺。”说的是日月的变化。“有兴必有废,有盛必有衰。”讲的是社会的运动。可是,有些事物的变化比较缓慢,人们不易觉察到。例如,世界上最高的山喜马拉雅山巍然屹立在我国的西南边陲,看似永远不变化,然而,事实上它是从“喜马拉雅海”变来的。1亿多年以前,这里还是极目浩瀚的一片汪洋。另外还有一些事物,如恒星、高空飞行的超音速飞机、基本粒子等等,虽然它们的变化非常快,但由于距离我们太远或太小,我们也不易觉察它们的运动。总之,整个世界,从最小的东西到最大的东西,从自然到社会,无时不处在运动之中。“一切皆变,无物常住。”
  我们承认任何事物都在运动,但并不否认静止的存在。不过这种静止不是绝对的静止,而是相对的静止。例如,一个人坐在奔驰的火车里,相对于火车的空间位置来说,他是没有运动的。可是,请不要忘记,火车在急速地行走,人和火车都在地球上,而地球也在不停地自转并围绕太阳公转。再说,人虽然坐着没动,但在他的体内,每天都有千万个细胞在死亡,又有千万个细胞在新生。总之,人也在不停地运动着。另外,某一事物虽然处在运动中,但在一定条件下只是发生一些细微的变化,而没有发生质的变化,此事物仍然为此事物,呈现出相对静止的面貌。只有当这些微小的变化积聚到一定程度,此事物才能变成别的事物。例如,一个人刚出生后就在不断地变化,但直到死亡之前,某人终归是某人。
  否认事物的相对静止,就必然认为一切事物都是瞬息万变,不可捉摸,这也就必然否定事物特殊的质的规定性,导致相对主义和诡辩论。
  赫拉克利特有一学生叫克拉底鲁,善于别出心裁,为了达到一语惊人的目的,提出“人连一次也不能踏入同一条河流”的惊世之言。他解释说,我们既然承认一切皆流,万物皆变,那就是说,任何事物无时无刻不在发生变化,不可能有片刻的静止和稳定。这正如一条河流,在我们刚刚踏入的一瞬间,它就变成了另外的河流了,所以,我们一次踏进去的就不是同一条河流了。
  有人问克拉底鲁:“河流是如此,是否其他事物也这样呢?”
  克拉底鲁不假思索地回答说:“从哲学的观点看,这是毫无疑问的。世界上的所有事物正是这样永不停息地变动着。”
  这时,有人指着克拉底鲁坐着的椅子问他:“你坐着的是什么?”
  “是椅子。”
  “不对!”提问者反驳说,“按照你的理论,你的话还没说完,它已经变得不是椅子了。”
  克拉底鲁无言以对。后来,他怕再出洋相,不管任何人问他什么问题,他都不作回答,而只是不断摇动大拇指。意思是说,你问的问题我不回答出来,因为就像指头的摇动一样,任何事物都在不断地变化,我们无法加以认识,我们更不能把它说出来,因为在说出时它已不存在了。后来,有人把克拉底鲁称为“只动手指头的哲学家。”
  克拉底鲁否定事物相对稳定性的荒谬主张受到人们的嘲笑。有一位希腊的喜剧作家得知后,特意按照他的观点编了一个喜剧,在第一次演出时恭请克拉底鲁观看。克拉底鲁不知底细,欣然前往。
  演出开始了,剧中人甲和乙出场。
  甲:朋友,我有急用,但手头拮据,帮帮忙,先借点钱给我。
  乙:你这人从来不讲信用,经常赖帐。前几次借我的钱还没还呢,现在又想来骗我。告诉你,我不会再上当了。
  甲:朋友,怎么能这么说!我这个人从来都是讲道理的,前几次没有还不都是有道理的吗!
  乙:什么道理?尽是些歪道理!你别想再耍花招了。
  甲:朋友,这次你无论如何要帮我的忙,我向你保证,借你的钱一个月后全部还清。你要是不信,我可以向天发誓,到那时不还老天惩罚我!
  乙:你既然发了誓,那就拿钱去吧!到时可不能再赖帐了。
  (甲和乙退场,过一会儿二人又上场)
  乙:一个月已经过去了,借我的钱该还了吧!
  甲:朋友,你知道我借钱干什么了吗?我拿这笔钱拜了一位老师学哲学。学了他的哲学,我不论做任何事都是有道理的。要不要把他的哲学讲给你听听?
  乙:你少罗嗦!借我钱时你对天发了誓,现在一个月已到,你把钱还给我,不然,老天会惩罚你的。
  甲:按照老师的哲学道理,我既不用还钱,也不会受惩罚。我的老师说,一切都在不断变化,人连一次也不能踏进同一条河流,因为河流眨眼间就变了。从你借钱到现在已一个月,现在的我早已不是向你借钱并对天发誓的我。所以,你不应向现在的我要钱,只能去向一个月前向你借钱的那个我去要钱。
  (乙听后非常气愤,抓住甲痛打一顿)
  甲:你敢打我!我到法院告你,要你赔偿损失并付医药费。
  (甲叫喊着跑下,乙追下,下一场在法院)
  法官:谁是原告?告什么状?
  甲:我是原告,我控告乙打伤我。法律应罚他,还要他赔偿医药费。
  法官(对乙):是你打人吗?
  乙:(在讲明了事情的经过后)我知道打人犯法,要受到法律制裁。但按照他老师的道理,一切事物都在变化,一事物马上会变成别的东西。我也在瞬息万变,现在的我并没有打人,打人的我是过去的我,因此,法律应惩罚先前打人的那个我,并让他付药费。
  演到这里,剧场里的灯大亮,观众们无不捧腹大笑。这时,有人认出了克拉底鲁,大声喊道:“大家看,赖帐不还的人所拜的老师不就是这位克拉底鲁先生吗!”全场观众的目光一下子集中到克拉底鲁身上,弄得他非常尴尬,无地自容,他只是习惯地伸出手来摇动着大拇指,这一举动更引得人们笑得前仰后合。
  所以,承认事物的运动变化并不是说否认它在一定条件下的相对稳定性或者说质的规定性。一个事物,如果它在某个时间在某个方面具有某个属性,那么,它在这个时间在这个方面就具有这个属性,它不能既具有又不具有这个属性,它或者具有这个属性,或者不具有这个属性。客观事物的这种质的规定性反映在人的思维中就表现为人的思维的确定性,也就是说,在同一思维过程中,每一概念、命题的自身都具有同一性;两个相互矛盾的思想不可能同时为真,即至少一假;两个相互矛盾的思想也不可能同时为假,即至少一真。这就是形式逻辑最基本的规律:同一律、不矛盾律和排中律。
  曾有这样一个案例:有一天,某国首都一家珠宝店被盗贼窃走一块价值5000美元的钻石。经过侦破,警方人员查明作案的为甲、乙、丙、丁四人中的某一个。于是,四个人被作为重大嫌疑犯被拘留。在审讯中,四人的口供如下:
  甲:钻石被窃的那一天,我正在别的城市,所以,我不可能作案。
  乙:丁就是罪犯。
  丙;乙是盗窃钻石的罪犯。三天前我见他在黑市上卖一块钻石。
  丁:乙同我有私仇,故意诬陷我。
  现在假定四人中只有一个人说真话,罪犯是谁?再假定四人中只有一人说假话,罪犯又是谁?
  这四人的口供整理后实际上是下面的几句话:
  甲:甲不是罪犯。(1)
  乙:丁是罪犯。 (2)
  丙:乙是罪犯。 (3)
  丁:丁不是罪犯。(4)
  这里,正因为丁这个人本身具有相对的稳定性,(2)与(4)构成两个相互矛盾的命题。
  据排中律,两个相互矛盾的命题不能都假,其中必有一真。据第一个假定,四个人中只有一人说真话,因此,说真话的或者是乙或者是丁,甲和丙说的必是假话。丙说假话,证明乙不是罪犯,而甲说假话,则证明他是此案的罪犯。
  据不矛盾律,两个相互矛盾的命题不可能同真,其中必有一假,因此,在乙和丁二人中必有一人说假话。又据第二个假定,四人中只有一个说假话,所以,甲、丙必然说真话。甲说真话,证明他不是罪犯,而丙说真话,证明乙是本案的罪犯。
  同一律、不矛盾律和排中律既然是形式逻辑的基本规律,那么,日常思维在任何时候都必须遵循它们。这些规律也是科学理论体系保持首尾一贯的必要条件,否则,如果违背它们,在一理论体系中出现了逻辑矛盾,那么,此理论不可能是科学的理论。但是,在一个悖论中,由一命题真却推出它为假,而由它假又推出它真。真也就是假,假也就是真,真假是等值的。一命题既真且假,既不真也不假。在悖论面前,形式逻辑的根本大法同一律、不矛盾律和排中律全都失效,人们思维的基础崩溃了,难怪人们要惊得目瞪口呆了。
  三、悲壮的殉道者--希帕索斯悖论
  毕达哥拉斯是一位与孔子、释迦牟尼几乎同时代的古希腊著名的数学家和哲学家。在中学的平面几何中,有一个定理叫“毕达哥拉斯定理”,就是以他的名字命名的。
  毕达哥拉斯出生于爱琴海东面的萨摩斯。他十分好学,不愿跟随父亲学习雕刻指环的手艺,而是一心想拜有学问的人为师。于是,他周游各地,曾拜在阿那克西曼德、费雷居德等哲学家的门下,学习了不少哲学和自然科学的知识。后来,听说老师的许多知识都是从东方的巴比伦和埃及学来的,就动身到巴比伦和埃及求学。他曾在埃及居住了近22年,从埃及神庙的祭司那里了解了古埃及的数学、天文、宗教等方面的知识。在40岁左右时,毕达哥拉斯就已成为很有学问的人了。为了把所学知识传授给家乡的人民,他又回到了萨摩斯。由于政治观点不同,只得又离开家乡,前往希腊的移民地意大利南部的克罗通定居。他的后半生就是在这里度过的。
  为了能向人们传授知识,毕达哥拉斯开办了一个公众学校,到这里学习的曾达300多人。为便于组织学习,他把学生组成一个类似宗教团体富于神秘主义色彩的集团。例如。他制定了许多奇怪的戒律:不准用刀子拨火,不准坐在斗上,不准在大路上行走,房子里不准有燕子,。不准养脚爪有
  钩的鸟等等。准备参加学习的人一开始不能和他见面,只能在门外听讲,听过一段时间后进行考试,及格的人才能与老师见面,成为正式的学生。毕达哥拉斯是这个团体的最高首领,主持他们的学习和生活。
  毕达哥拉斯学派提出一著名的观点:“一切都是数。”哲学的任务就是要发现世界的本原,而作为世界的本原应当是构成一切事物而又为一切事物所共同具有的东西,而数正是这种东西。因为不论什么事物,大到天体,小到尘埃,都有一定的长短、高低、大小、轻重等数量,没有数量的事物是不存在的。
  数既然是世界的本原,那么,它如何构成世界上的事物呢?毕达哥拉斯派解释说,作为世界本原的“数”是一种单位,它占有一定的空间,是有形的。数的开端是“1”,“1”就是一个小点(·)。虽说这种点非常小,但却是存在着的,正如阳光透进房间时我们看见的无数纤尘是存在的一样。“2”这个数是两点的排列,即成为一条线(一)。同样,“3”这个数是面(△),而“4”这个数就是体了( )。数的排列到了“4”,就出现了有形体的事物。由这四个数就构成了土(立方体)、火(四面体)、气(八面体)、水(二十四面体)四大基本要素,这四种要素的不同排列组合就构成了世界上形形色色的具体事物。可见,一切事物都由数构成。
  数不仅构成了一切事物,而且,作为一种量,它也存在于所有的事物之中。任何事物之间都存在着一定的数量比例关系,正因为这种数量比例关系,世界才表现出其秩序和规律。不同的数量形成一定的比例,一定的比例就是事物之间的和谐。他们在研究音乐乐理的谐音时发现,产生各种谐音的弦的长度都成整数比(分数)。例如,两根绷得同样紧的弦,当它们的长度比为2∶1时,就会产生相差八度的谐音,而当它们的长度比为3∶2时,短弦发出的音比长弦发出的音要高五度。而如果三根绷得同样紧的弦,当它们的长度比为3∶4∶6时,就能得到和声的谐音。如果把“中音1”的弦长定为1,音阶与弦长就有如下妙不可言的分数关系:
  音阶 1 2 3 4 5 6 7 i
  另外,他们还对正方形的面积进行了研究,所得结果令他们更加兴奋。
  正方形同a为边长的正方形面积之比分别为4∶1、9∶1、16∶1……n2:1;同时,在研究同名正多边形覆盖平面问题时,他们发现,这种覆盖只有如下三种情况(见图3),即六个正三角形、四个正四边形和三个正六边形。在这三个图形中,其边数比为3∶4∶6,而其正多边形的个数之比则恰好相反,为6∶4∶3。
  总之,一切事物都必须而且只能通过数得到解释,宇宙的本质和规律就是数的和谐,也就是说,宇宙间的一切现象都能归结为整数或整数之比。毕达哥拉斯学派首创西方沿用的“宇宙”(cosmos),它的本义就是一个和谐而有规律的整体。公元前5世纪,毕达哥拉斯学派的菲罗洛斯在谈到这个问题时说:“如果没有数和数的性质,世界上任何事物以及与其他事物的关系都不能为人们所清楚地了解……你不仅可以在鬼神的事务上,而且可以在人间的一切行动、思想,以至一切行业和音乐中看到这种数的力量。”
  由于认为世界的本质就是数的严整性与和谐性,所以,毕达哥拉斯派非常重视数学的研究。他们基本建立了所有直线形的理论,包括三角形全等的定理,平行线理论、相似理论、三角形的内角和定理等等。三角形的内角和定理是说,一个三角形的内角和等于两直角。这是中学平面几何中非常重要的定理。他们还发现了有名的“毕达哥拉斯三数”,即可以排成直角三角形三条边的整数组,他们除了给出具体的特例外,还给出了一般法则:如果m
  明了关于直角三角形斜边与两直角边关系的定理,即著名的“毕达哥拉斯定理”(即“勾股定理”):直角三角形斜边的平方等于两直角边平方之和。在当时,中国人、巴比伦人、埃及人和印度人早已了解到此定理的部分情况,但都没有给出一般的证明。因此,毕达哥拉斯和他的门徒在给出这条定理的证明后欣喜若狂,后来主张简朴节俭的师徒们也破例举行隆重、热烈的庆贺。据说,他们宰了100头牛举办了盛大的“百牛宴”,以至有人议论说,人们喜悦,牛却遭了殃。
  然而,正当兴致未尽之时,他们的狂热却被一个人狠狠地泼了一盆冷水,这就是入会不久的希帕索斯。希帕索斯是个勤奋好学的青年,他善于独立思考,不盲目附合。他学了勾股定理以后,在研究正方形的对角线时发现,这条对角线(亦即等腰直角三角形的斜边)既不能用整数表示,也不能用整数之比(分数)表示。因为,如果能用整数或整数之比表示,则必然带来不可克服的矛盾。证明如下:
  设等腰直角三角形的两直角边为a,斜边的长度为约去公因数的两整数
  因为m、n约去了公因数,则二者之中至少有一奇数(都是偶数则有公因数2)。
  而m2=2a2n2。
  ∵2a2n2为偶数,则 mZ为偶数,
  ∴m必为偶数〔m不可能为奇数,因为任一奇数 Zn+1的平方(2n+1)2=4(n2+n)+1必是奇数〕。
  又∵中至少有一奇数,
  ∴n必是奇数。
  m既是偶数,设 m= 2P,
  于是,m2=4p2=2a2n2,
  n2为偶数,而n也必是偶数。
  综上可知,假如他们的信念是正确的,那么,同一数n既是奇数又是偶数。说它是奇数,它又是偶数,而说它是偶数,那么,它又是奇数。但是,一个数要么是奇数,要么是偶数,不能既是奇数又是偶数。因此,以上的循环必然是一矛盾,人们把这种循环称为“希帕索斯悖论”。
  在一推导中得出明显错误的结论,无非有两种情况:一种是前提错误,一种是推导过程不正确。以上的推导中使用了两个前提:一个是毕达哥拉斯派“一切现象可归结为整数或整数之比”的信念,另一个就是华达哥拉斯定理,但由二者推出了矛盾。显然,推导过程毫无差错,因此,问题只能出在前提上。毕达哥拉斯定理是已证明为正确的定律,这样,他们的信念就是不成立的。因此,希帕索斯悖论的发现就如同一声晴天霹雳,动摇了毕达哥拉斯学派整个信念大厦的基础,引起其他毕氏门徒的极大恐慌。他们决定立即封锁消息。可是如何能封锁得住?一传十,十传百早就传开了。这使得他们非常恼火,决定捉拿泄露天机的希帕索斯。希帕索斯并不屈服,于是逃离了这个学会。一些激进的门徒紧追不舍,结果在地中海的一条船上抓住了希帕索斯,并把他扔到了海里。
  “青山遮不住,毕竟东流去。”希帕索斯可以抛到大海里淹死,但希帕索斯悖论是淹不死的。等腰直角三角形斜边的问题是人类社会生活中客观存在的问题,人们需要解决它来完成生产建设中某一环节的计算。因此,社会生活会从实际需要中促使希帕索斯悖论的发现。另外,根据毕达哥拉斯定理,可以看出,直角三角形的三条边并不一定就是整数,这使得毕达哥拉斯学派的信念中必然导致矛盾。作为直角三角形特殊情形的等腰直角三角形必然会成为研究者的课题,即使没有希帕索斯,也会有另外一个人看到这一悖论,只不过是时间早晚而已。人们很快发现,不能用整数或整数之比表示的数并
  路人皆知的事实,这些事实像潮水一样猛烈地冲击着传统观念,促使人们重新审视一切数都是整数或整数比的有理数理论,这就是历史上的第一次数学危机。
  严格说来,这种危机并不是数学本身的危机,而是毕达哥拉斯学派“万物皆数”(整数或整数之比)信念的危机。本来,整数或整数之比确实是宇宙中普遍存在的现象,但他们把这种现象夸大并神秘化了。例如,当他们发现l、2、3、4能构成谐和的乐音时,就把l、2、3、4之和的10看作神圣而完美的数目,并把这一图形(由10个点构成的完美整体)也看作神奇而玄妙的图形,以至于认为天体也应该达到10这个数目。他们认为,人与人的关系也与数有直接联系。他们把理性看作1,意见看作2,正义看作4,婚姻看作5,爱情看作8。由于他们把违反客观规律的这种信念当作绝对真理,因此,必然会造成悖论,而危机也必然会接踵而至。
  四、阿基里斯追不上乌龟--芝诺悖论与贝克莱悖论
  阿基里斯是《荷马史诗》中的一个善跑健将,而乌龟是人们公认的跑得最慢的动物。起跑时让乌龟领先10米,发令之后,阿基里斯如离弦之箭向前冲去,而乌龟不论多急也只能慢吞吞地向前爬。大家肯定认为阿基里斯只需一眨眼的工夫就会追上并超过乌龟,但古希腊埃利亚学派的芝诺却指出,跑得最快的并不能跑过最慢的,阿基里斯永远追不上乌龟。这是著名的“芝诺悖论”之一。芝诺提出此悖论的目的是为了否认运动的真实性。据说,后来古希腊犬儒学派的第欧根尼曾用十分简单的方法——行动进行反驳。他一语不发地站起来,在房间里走来走去,然后,询问学生这种反驳如何。其中一个学生很高兴,对反驳感到非常满意。第欧根尼上去就踹了他一脚,然后把他狠狠地训斥了一顿。这是因为芝诺并不否认这种感性的运动,而是在理性上用理由进行证明运动并不真正存在,因此,对方只有用理由进行反驳才有效。
  芝诺的论证是这样的:
  假设阿基里斯和乌龟的速度都保持不变,而阿基里斯的速度是乌龟的10倍,那么,当阿基里斯跑到第10米——乌龟起跑的地方时,乌龟已爬到第11米的地方去了,乌龟领先1米。于是,阿基里斯又奋勇向前。当他跑到第米……显然,这些距离有无限多个,跑完一个又一个,永远也跑不完,乌龟始终领先一段距离。因此,阿基里斯只能无限地接近乌龟,而永远追不上、更不能超过乌龟。
  由于在常识看来,阿基里斯能追上并超过乌龟,芝诺的上述论证在当时被认为最难以驳倒的,而所得结论却明显与直觉矛盾,因此,人们称之为“阿基里斯悖论”。
  这种论证正确吗?从哲学上讲,这显然是一种诡辩。表达运动的概念有两个,即间断性(或点截性)与不间断性域连续性),是不间断性与间断性的统一。芝诺的错误在于,他不懂得运动本身是二者的统一,而形而上学地割裂两者,只承认间断性而不承认不间断性。他把运动假定为在空间可无限分割的点,而把物体(阿基里斯)局限于点上,把运动看作这些静止状态的点的总和。他不懂得运动的物体到达这个点的同时就要离开这一点,因此,运动的物体不可能达不到目的而停留在无限可分的点上,阿基里斯会很快赶上并超过乌龟。
  另外,芝诺没有看到,那些距离虽然有无限多个,可是,它们的和却是一个有限的、确定的距离。相应地,阿基里斯所用时间间隔虽然有无限多个,但它们的和也是确定的、有限的一段时间。
  按已知条件,设阿基里斯跑完第一段路程所需时间为1分钟,则第二、
  龟所有需时间t为:
  用10乘等式两边得:
  用(2)式减(l)式则有:
  芝诺悖论在当时并不受重视,但它在数学上的价值直到后世才为人们所发现,它说明“无穷大”、“无穷小”等概念逐渐出现在数学研究的项目中,这也是极限理论的萌芽。
  在近代,随着科学技术的发展及社会实践的需要,这些概念又重新引起人们的注意,微积分理论就是主要建立在无穷小量分析之上的。但无穷小量分析后来被证明是包含矛盾的。
  无穷小量分析的特点在于“无穷小量”的自由应用。例如,15世纪的尼古拉斯就曾用这种方法求出了圆的面积公式。他首先通过无穷分割得出了无穷小三角形OAB(见图4)。由于AB为无穷小量,因此,无穷小三角形就既被看作一直边三角形,同时又被看成曲边三角形。作为直边三角形,它的
  角形的高),而由于它又是曲边三角形,它的无穷累积就是圆。因而,圆的
  (L1+L2……为圆的周长)。
  又如,费尔玛也曾用无穷小量分析解决过求非匀速运动物体的速度问题。他的方法是这样的:(l)截取一时间间隔△t,并求出这一时间间隔物体所通过的距离△s;(2)求出△s,显然,这是物体在此时间间隔内的平均速度:(3)令△t=0,这时,我们所截取的时间间隔就是无穷小量dt,因此,这时所获取的速度就是物体在这一时刻的瞬时速度。
  由于微积分理论的研究对象是非均匀变化(如非匀速运动、曲线形),因此,这里的主要问题就是如何把非均匀变化转化为已解决的均匀变化来研究,即“变非匀速运动为匀速运动”,“化曲为直”。而无穷小量由于其本身的特性恰好为这种转化实现提供了条件。因此,无穷小量分析在严格的极限理论建立以前一直是微积分理论中的主要方法。
  但是,作为其基础的无穷小量分析却包含有逻辑矛盾。具体而言就是:在无穷小量的实际应用中,它必须既是0又不是0;但从形式逻辑的角度来看,这无疑是违反不矛盾律的。例如,就圆的求面积而言,如果认定无穷小量AB为0,那么,无穷小三角形OAB就根本无面积可言(这时根本不存在三角形);而如果认定AB不为0,那么,无穷小三角形仍然是曲边三角形,从而,也就不能用计算直角三角形的方法来计算它的面积。又如,就非匀速
  传统法则,这是无意义的。事实上,这时也没有任何
  平均速度,而不是瞬时速度。
  由于无穷小量分析中包含有这样的矛盾,而牛顿、莱布尼兹在建立微积分时也没有在理论上解决这个问题,这就使得无穷小量必然会首当其冲地成为不少人攻击的对象。在反对无穷小量分析的人士中,最激烈的要算爱尔兰克罗因地区的主教乔治·贝克莱。他认为,无穷小量只是一些数学家臆想的产物,是抽象的、虚无缥缈的主观猜测。他把无穷小量讽刺为“逝去了的量的幽灵”贝克莱的目的虽然是企图否定无穷小量,但通过这种指责可以看出,他在此问题上的确是个“行家”,他确实有效地揭示了无穷小量分析中所包含的逻辑矛盾。由于当时人们确信建立在无穷小量分析之上的微积分理论的正确性,因而,由此引起的矛盾就被认为是悖论,世称“贝克莱悖论”。
  由于贝克莱的攻击切中了要害,因此,贝克莱悖论的发现动摇了数学的基础,在当时的数学界引起了一定的混乱,人们把它称之为“第二次数学危机”。
  实际上,这并不是整个数学的危机,而是无穷小量分析方法的危机。第二次数学危机后,一些数学家致力于解决这一矛盾。通过近半个世纪的努力,人们发展了极限理论,从而为微积分理论建立了可靠的基础,克服了危机,解决了悖论。
  五、无穷旅馆
  ——伽利略悖论
  什么样的数算大数呢?当然,这是一个相对的问题。有这样一个故事:
  两个贵族想做数数的游戏——谁说出的数字大谁赢。
  “好,”一个贵族说,“你先说吧!”
  另一个绞尽脑汁想了好几分钟,最后说出了他所想到的最大数字:“3。”
  现在该轮到第一个动脑筋了。苦思冥想了一刻钟以后,他无可奈何地说:“你赢啦!”
  两个贵族的智商显然是非常的低,这很可能只是一个挖苦贵族们的故事。但是,如果是发生在原始部落中,这故事大概就完全可信了。现已证实,在某些原始部落中,没有比3大的数词。如果问他们有几个儿子或杀死过多少猎物,那么,要是这个数字大于3,他就会回答说:“很多个。”看来,他们的计数水平还不如一些幼儿园的娃娃呢!
  有时候,看似不大的数却出乎意料的大,古印度的舍汉王就曾经吃过亏。据传说,舍汉王打算重赏国际象棋的发明和进贡者、宰相达希尔。这位聪明大臣的要求看来并不高,他跪在国王面前说:“ 陛下,请您在这张棋盘的第1个小格内放1粒麦子,第2个小格内放2粒,第3格内放4粒,照这样下去,每一小格内都比前一小格加一倍。陛下把这样摆满棋盘上的所有64格的麦粒都赏给您的仆人就行啦!”
  “你所求的并不多啊。”国王说道,心里为自己对这种奇妙的发明不用花费太多而暗喜,“你会如愿以偿的。”说着,他令人把一袋麦子拿到宝座前。
  计数麦粒的工作开始了,第1格内放1粒,第2格内放2粒,第三格放4粒……还没放到第20格,袋子已经空了。一袋又一袋的麦子被扛到国王面前来。但是,麦粒数一格一格增长得如此迅速,很快就可看出,即使拿来全印度的粮食也兑现不了国王的诺言,因为这需要18, 446, 744,073,709, 551, 615颗麦粒。 1升麦子约137, 560颗,照此计算,那就要给达希1136亿升。这位宰相要求的竟是全世界在2年内生产的全部小麦!
  这样,舍汉王发现自己欠了达希尔好大一笔债,要么忍受他没完没了的讨债,要么砍掉他的脑袋,当然,舍汉王选择了后者。
  达希尔所要求的麦子粒数虽然大得令人难以置信,但毕竟是有限的,就是说,只要有足够的时间,人们总能把它从头到尾写出来。然而,还有一些比我们所能写出的无论多长的数还要大的数,即无穷大的数,如“所有自然数(正整数)的个数”、“一条线上所有几何点的个数”。这些数是随着数学的发展必然被人们发现的。第一次数学危机促使严格的实数(包括有理数和无理数)理论的建立,第二次数学危机则使极限理论成为微积分的主要工具。极限理论也是以实数理论为基础的,而实数的数目就是无穷的。对于无穷大的数,除了说它们无穷大之外还能说些什么呢?这些数能否进行比较?
  “所有有理自然数的个数和一条线上所有几何点的个数哪一个大些?”这一问题乍一看真是不可思议,但著名的数学家康托尔首先思考了这一问题,并指出二者是不一样大的。然而,我们又会面临这样一个问题:这些既不能读出来,也无法写出来,该怎样进行比较呢?这下我们有点儿像一个既不清楚自己的汽车有多少座位,又不了解有多少个乘客,但却想知道座位够不够坐的司机了。既然他什么也不清楚,他会不会放弃原来的打算呢?根本不会。如果他足够聪明(而且通常的办法也是如此),他就会通过把座位和乘客逐个相比的办法来得出答案。他让第一位乘客坐在第一个座位上,第二位乘客坐在第二个座位上……这样一直相比下去。如果最后座位用光了,还剩下些乘客,他就知道乘客多于座位;如果乘客都坐下了,座位还有多余,他就会明白座位多于乘客;如果乘客都坐下了,座位也正好用完,他就会晓得,乘客和座位数目相等。
  康托尔所提出的比较两个无穷大数的方法与此是相同的,即给两组无穷大数列中的每一个数一一配对,如果这两组最后一个都不剩,这两组无穷大就是相等的;如果有一组还有些没有配完,这一组就比另一组大些。这种方法显然是合理且实际上也是唯一可行的方法。但是,当把这种方法实际应用时你却会大吃一惊。举例来说,所有偶数与所有奇数这两个无穷大数列,我们都会直觉到它们的数目相等,应用上述方法也完全符合,因为这两组数可建立一一对应关系:
  1 3 5 7 9 11 13……
  2 4 6 8 10 12 14……
  这里,这种对应是非常自然的。现在请读者思考一下:所有整数的数目与所有偶数的数目哪一个更多?当然,你会说前者多一些,因为所有的整数不仅包括所有的偶数,而且也包括所有的奇数。然而,这只是人们的直觉。如果应用上述方法,你会吃惊地发现,这种直觉是错误的,从下面的对应表就可看出:
  1 2 3 4 5 6……
  2 4 6 8 10 12……
  根据上述比较无穷大数的原则,偶数的数目与整数的数目是同样多的。当然,这个结论看起来是非常荒谬的,因为偶数只是整数的一部分,这与整体大于部分的直觉显然矛盾。由于这种矛盾首先是伽利略发现的,故称“伽利略悖论”。康托尔认为,伽利略悖论并非什么“悖论”。任何两组东西,只要能相互一一对应,就是一样多。“整体大于部分”这条规律只有在有穷的情况下正确。在无穷大的世界里,部分可能等于全体!这就是无穷的本质。
  对于有穷和无穷的特点,著名数学家希尔伯特的一则小故事给予了最好的说明:
  某旅游胜地有一家旅馆,内设有穷个房间。由于是旅游旺季,所以,所有的房间都已客满。这时,来了位客人想订个房间。“对不起,”店主说,“所有房间都住满了”。客人无可奈何地来到另一家旅馆。这家旅馆与别的旅馆并无多大不同,只是房间数不是有穷而是无穷多个,号码为1、2、3…… 这位客人到来时,所有房间也已住满,但他疲惫已极,坚持要住下。旅馆老板只得耐心劝说:“满了就是满了,非常对不起!”正好这时候,聪明的老板的女儿来了。她看见客人和她爸爸都很着急,就说:“这不成问题!请每位房客都搬一下,从这房间搬到下一间。”于是,1号房间的客人搬到2号,2号房间的客人搬到3号……依次类推。最后,这位客人住进了已被腾空的1号房间。
  第二天,又来了一个有无穷多位旅客的庞大旅游团要住旅馆,这下又把老板难住了。老板的女儿又出来解围:“这好办,您让1号房客搬到2号,2号房客搬到4号,3号房客搬到6号……这样,l号、3号、5号等单号房间就都空出来了,新来的无穷多位客人就可以住进去了。”
  来多少客人都难不倒聪明的老板女儿,于是,这家旅馆越来越繁荣。后来,老板的女儿考入了大学数学系。有一天,康托尔教授来上课,听说此事后问她一个问题:“你能不能给1寸长线段上的每一点安排一个房间?”
  她绞尽脑汁,想要安排一下,但终于失败了。康托尔教授告诉她,1寸长线段上点的数目和自然数的数目尽管都是无穷的,但却不是一样大的无穷。线段上的点要比自然数的个数多得多,任何想安排下的方案都是行不通的。为了证明,我们给它们建立一一对应关系。
  线段上每一点可用这一点到这条线的一端的距离来表示,而这个距离可写成小数形式:
  l.0.a11a12a13a14……
  2.0.a21a22a23a24
  3.0.a31a32a33a34……
  ……
  k.0.ak1ak2ak3ak4
  现在我们可认选一个实数d=0.b1b2b3……,其中bk≠akk,同样,b1≠a11,b12≠a22…显然,d不等于上述任何数,因为至少第k位 bk≠akk。这样,线上的点与自然数之间的一一对应就建立不起来,线上的点数所构成的无穷大数大于自然数所构成的无穷大数。
  可以证明且令人惊异的是,无论线段是1寸长,1尺长还是和赤道一样长,上面的点数都是相同的。而且,平面、立方体上所有的点数与线段上所有的点数也是相等的。这种无穷是比自然数、分数的数目更高一级的无穷。同样可以证明,所有几何曲线的数目是第三级的无穷。到目前为止,还没有人想象得出更大的无穷大数。这三级无穷大数就足以包括我们想到的所有无穷大数了。看来,在无穷的世界里,我们有点像开头所讲的那两个贵族了!
  六、多少人参加比赛--康托尔悖论
  一年一度的某中学艺术节又要到来了。本次艺术节共设三项:书画比赛、歌咏比赛和围棋比赛。初二·三班的文艺委员孟娟对本班参赛人员进行统计,结果是:参加书画比赛的15人,参加歌咏比赛的28人,参加围棋比赛的25人,但使孟娟百思不得其解的是,参加人员总计68人,而她的班里总共才有60人,剩余的8人是从何处来的呢?原来,这是由集合的性质造成的。
  关于集合的理论是19世纪末开始形成的。当时德国数学家康托尔试图回答一些涉及无穷量的数学难题,例如“整数究竟有多少?”“一个圆周上有多少点?”0—1之间的数比1寸长线段上的点还多吗?”等等。而“整数”、“圆周上的点”、“0—1之间的数”等都是集合,因此对这些问题的研究就产生了集合论。
  集合是什么呢?用康托尔的话说,集合就是把具体的或思想上的一些确定的、彼此不同的对象聚集成的整体。简单说来,集合就是一组事物。例如“中华人民共和国的直辖市”、“星期二数学课迟到的人”、“张三穿过的鞋”等都是集合。物以类聚,人以群分,同类的人或事物总有共同的特点或性质,根据这种特点或性质就可以决定一个类,这个类就是集合。任何人或事物总是处于不同的集合中,甚至你自己也会是一些集合内的成员,如你的家庭、你上学的班、你参加的校外活动小组等。生活中我们有时也用其他的词如群、套、队、族、类、班等等来表示集合。
  集合可以是一组数字、一群人、一些图形、一类概念。构成一个集合的东西均属于这个集合,属于这个集合的个体称为集合的元素,比如“小于7的奇数”就是一个集合,构成这个集合的1、3、5就是这个集合的元素。“中学课本”也是一个集合,组成此集合的物理课本、化学课本、英语课本等是这个集合的元素。给出一个集合,就规定了这个集合是由哪些元素组成的。显然,对于任何事物来说,它要么属于一个集合,要么不属于这个集合,二者必居其一。如1和3属于“小于7的奇数”这一集合,而6和8则不属于这个集合。
  “小于7的奇数”这一集合由元素1、3、5组成,人们通常把这种说法用符号表示,记作:{1,3,5},花括号{}示集合的元素的组成,一般用英语大写字母表示集合,如A={1,3,5}。这种表示集合的方法称为列举法。而“小于7的奇数”是通过描述集合元素的共同性质的方法来表示这个集合的,因此这种方法又称为描述法或特征法。这两种表示法是可以互换的。一般地,如果集合由有穷个元素组成,且这些元素又知道得清清楚楚,那么最简便的方法就是列举法,如“中国的直辖市”可表示为{北京,天津,上海}”而如果元素为无穷多个,或者即使为有穷多个,但其元素太多,那么一般使用描述法,如“济南市的居民”、“大于9的奇数”。有时描述法也可这样表示:A={X|X 是济南的居民},B={X|X是大于9的奇数}。
  在算术中我们常比较一些数,找出其中哪一个数较大。集合也可以进行比较,而比较的方法之一就是把一个集合的元素与另一个集合的元素进行比较。集合{1,3,5,7}与集合{2,4,6,8}不同,因为二者的元素不同。而集合A={a,b,c}与集合B={c,b,a}则是相同的,这是因为这两个集合有着相同的元素,这时我们记作A=B。至于元素排列的次序是否一样,倒是没有关系的,只要两个集合具有相同的元素,它们就是相等的。
  集合之间还可以采用一一对应的方法进行比较。古时有一人遭诬陷后被关进了漆黑一团的地下室里,他一心想着能早日出去报仇,但在这幽暗的世界里,没有黑夜与白天的分别,当然更没有天数的概念、怎么能知道自己在这里呆了多少天呢?他发现了一个窍门,原来狱卒每隔一天倒一次马桶。于是每当狱卒倒马桶时,他就用石块在墙上划一道线,这样马桶的集合与线的集合就形成一一对应,而马桶的集合又与日期的集合形成一一对应,因此,从线的多少就可以知道天数的多少。
  要对任何两个集合进行比较,只要用一个集合的元素去对应另一个集合的元素就可以了。如果两个集合有一一对应的关系,那么我们就说两个集合是等价的,如上述线的集合、马桶的集合、日期的集合相互之间都是等价的。但值得注意的是两集合等价与相等不是一回事。例如在初一·二班中有张三和李四两位同学,张三的老师的集合A与李四的老师的集合B是相等的,因为两集合的元素是完全相同的;也就是:
  A={王五,赵六,周七}
  ‖ ‖ ‖
  B={王五,赵六,周七}
  但假如张三与李四不是同一学校的,张三的老师的集合A与李四的老师的集合C就不是相等而是等价的,因为两集合的元素只是一一对应,而不是相同的,也就是:
  A={王五,赵六,周七}
  C={吴八,郑九,陈十}
  判断若干个集合是否等价最简单的办法就是看每个集合内元素的个数是否相等,一集合的元素的个数称为此集合的基数,例如{北京,天津,上海}这一集合有三个元素,故其基数为3,而{《孔乙己》,《风波》,《阿Q正传》,《一件小事》}有四个元素,则基数为4。
  有一些集合,它们的元素是有穷的,如{1,4,9,……100},{里根,布什,克林顿},这种集合称为有穷集合。而有些集合则有无穷多个元素,如整数的集合、宇宙中星体的集合等,这种集合称为无穷集合。无穷集合的基数大于任何有穷集合的基数。由上节的分析可以看出,无穷集合可以通过一一对应的方法进行比较,但却出现了令人惊讶的结果,如偶数集合与自然数集合的元素一样多,一条线上点的集合与平面上点的集合其元素也是相等的。康托尔把无穷集合的概念作为集合理论的基础,并证明无穷集合的一个显著特点就是无穷集合自身可与其部分具有一一对应关系。
  还有一种集合与无穷集合恰好相反,这种集合不包含任何元素,例如“能被2整除的奇数的集合”、“活到1200岁的人的集合”等,这些集合叫空集。在我们讨论具有某种性质的对象时,把具有这种共同性质的一切元素组成的集合叫做全集。例如在某运动会中,参加某一项目竞赛的共有10名运动员,那么这10名运动员组成的集合就是参赛运动员的全集。
  在一集合中,我们可以拿出一部分元素来组成新的集合。在本节开始所述的例子中,“初二·三班的学生”是一集合,而在这些学生中,又可以分出几种不同类型的学生,如参加歌咏比赛的学生、参加书画比赛的学生、参加围棋比赛的学生等。这几类学生是初二·三班学生组成的几种集合,这些集合都是初二·三班学生集的子集。显然,子集是包含于原来集合的子集的元素,如张三既是参加书画比赛学生集的元素,同时也是初二·三班学生集的元素。当然,我们还可以按其他条件组成不同的子集。如男学生集、女学生集、团员学生集、参加英语学习小组学生集等等。那么给定一个集,能组成多少个子集呢?我们具体看一下,例如:
  {1}可有{}、{1}2个子集;
  {1,2}可有{}、{1}、{2}、{1,2}4个子集;
  {1,2,3}可有{}、{1}、{2}、{3}、{1,2}、{1,3}、{2,3}、{1,2,3}8个子集。
  依次类推,可以看出,一个含有n个元素的集合有2n个子集。
  需要注意的是,在集合论中,对于集合有多少元素没有限制,所以会出现只有一个元素的或没有元素的子集(空集),原集本身也是自己的子集。所以当我们问原集能有多少个子集的时候,空集和原集也须计算在内。
  一个集合的所有子集也可以组成集合,这个集合叫做原集的幂集。例如{张三,李四}这一集合的幂集就是
  {{}{张三},{李四},{张三,李四}}。
  两个或两个以上的集合还可以通过运算形成新的集合。例如英语考试优秀的学生集A={赵丽,王芳,陈凤},数学考试优秀的学生集B={朱军,王铭,王芳}。这两个集可以相加组成集C,它既包含了A的元素,又包含了B的元素,这个集就是{赵丽,王芳,陈凤,朱军,王铭}。这个集称为A和B的并集。注意的是,王芳在上面的集中不必写两次,只要写一次就说明她是C的元素了。因此C的基数并不等于A的基数加B的基数,而是二者相加后再减去共同的元素。文艺委员盂娟在作统计时实际上就是把3个子集进行相加,但要把3个子集的基数相加后再减去共同的元素才能等于初二·三班的总人数。而孟娟只是简单相加,忘记了应减去相同的元素,难怪要多出8人了。集合A和B还可以相乘得一新集合D,D是由于A、B中共同的元素组成的集即{王芳},D称为A和B的交集。
  以上是康托尔集合论的一些基本概念。康托尔的理论,特别是一一对应的方法造成的无穷中的悖论,与传统观念格格不入,难怪一开始康托尔就遭到那些坚持传统观念人士的强烈反对,说他的理论是“雾中之雾”,甚至有人骂他是疯子。当时德国数学权威、他的老师克洛耐克的攻击尤为激烈。他说:“康托尔走进了超穷数的地狱。”他有一句名言:“上帝创造了正整数,其余的是人的工作。”就是说,人只能在正整数的有穷范围内研究,至于无穷的世界则完全超乎人的能力之外。甚至不承认康托尔为他的学生。在这种情况下,康托尔长期受到压抑和排挤,竟然得不到柏林大学的教授职位,他郁郁不得志,一度精神崩溃,放弃数学的研究,后来终于在一家精神病院去世。
  然而康托尔集合论的创立是人类思维发展史上的一座里程碑,它标志着人类经过几千年的努力,终于基本弄清了无穷的性质。因此越来越多的人开始承认它,并成功地把它应用到许多别的数学领域中去。大家认为,集合论确实是数学的基础。而且,由于集合论的建立,数学的“绝对严格性已经取得”。这时,数学的王国里春光明媚,阳光和煦,一派太平景象。然而正当人们喜气洋洋、兴高采烈地准备大摆“百牛宴”时,数学王国的大地上突然爆发了空前强烈的地震——在集合论发现了一系列的悖论。
  这些悖论的出现,可以说是康托尔集合论的必然结果。实际上在19世纪末,康托尔本人就已发现自己理论中有不少矛盾,但他没有声张,而是悄悄地在利用。
  由上可知,有1个元素的集合其子集有2个,有2个元素的集合其子集共有4个,一般地,有n个元素的集合其子集有2n个,n个元素的集合其基数为n,而其所有子集组成的集合的基数为2n ,显然2n>n。因此有“康托尔定理”:任意集合(包括无穷集)的幂集的基数大于该任意集合的基数。
  据康托尔集合理论,任何性质都可以决定一个集合,这样所有的集合又可以组成一个集合,即“所有集合的集合”(大全集)。显然,此集合应该是最大的集合了,因此其基数也应是最大的,然而其子集的集合的基数按“康托尔定理”又必然是更大的,那么,“所有集合的集合”就不成其为“所有集合的集合”,这就是“康托尔悖论”。对这一悖论,康托尔并没有感到害怕,因为通过反证法恰恰证明没有“所有集合的集合”或者说“最大的集合”,当然也没有“最大的基数”。
  悖论的出现这时并没有引起多大的震动,人们觉得这似乎仅仅牵涉到集合理论的一些技术问题,只要作适当的修正,集合论仍然会成为数学大厦的基础,康托尔只是利用悖论进行反证,而并没有细究悖论的来源及意义,他没有意识到这种反证之所以可能,是因为他的理论中所使用的基本概念“集合”、“属于”、“元素”是包含着矛盾的。1901年罗素发表的“罗素悖论”则“剥掉了数学技术性的细节”,使其中的矛盾赤裸裸地暴露出来了!
  七、理发师给不给自己刮胡子-罗素悖论
  伯特兰·罗素是英国著名的哲学家、数学家、散文作家和社会改良主义者,1872年5月出生于威尔士的特雷克,祖父约翰·罗素勋爵在维多利亚女皇时代曾三次出任首相。罗素4岁前已父母双亡,他是在祖母和家庭教师的抚养下长大的。1890年进入剑桥大学“三一学院”学习,毕业后曾在三一学院任哲学讲师和兼职研究员。1920—1921年罗素曾来我国讲学并任北京大学客座教授。他也曾任美国哈佛大学客座教授,偶尔也在英美其他大学作短期讲学。罗素曾是亚里士多德协会会员,英皇家学会会员和英国科学院名誉会员。
  罗素一生颇具传奇色彩,他曾经四次结婚,三次离婚,两次因政治原因被监禁。一次是1918年因犯对美军的诽谤罪被监禁6个月,另一次是1961年在89岁时因煽动民众反对政府,支持核裁军运动,在医院被监禁1星期。
  罗素知识渊博,在数学、逻辑学、哲学、教育学、社会学等领域均有建树。他也是一位多产的作家,一生写有69本著作和大量的文章,1950年曾获诺贝尔文学奖。
  1901年6月,罗素考虑了康托尔悖论,通过分析其结构后发现了罗素悖论。构成罗素悖论所使用的也是康托尔集合论的最基本概念:集合、属于、元素。元素属于集合,一个集合也可以成为另一集合的元素。
  罗素说,集合可以分为两类,一类是集合本身也是自己的元素,例如“概念的集合”,它包含了所有概念为其元素,而“概念的集合”本身也是一个概念,因此也是它自己的元素,也就是说属于自己。又如“汉字符号组的集合”是由汉字组成的符号组,因此这一集合本身也是自己的元素。当然,“一切集合所组成的集合”也是自身的元素,因为它也是一个集合,这种集合罗素称为“非常集”。非常集并不是很多,最常见的还是第二类,即本身不是自己元素的集合,罗素称之为“平常集”。例如“兔子的集合”,这一集合本身是一概念,而不是一只兔子,因而它不是本身的元素。“英国首相的集合”则包含撒切尔、梅杰等人作为其元素,而这一集合本身却不是一个首相。此集合也是“平常集”。
  根据集合的特点,“兔子的集合”、“英国首相的集合”等等这些平常集也可以组成一个集合,即“所有不属于自身的集合的集合”。那么,现在就有一个问题:这一集合是平常集还是非常集?“所有不属于自身的集合的集合”属于自身还是不属于自身?
  如果它属于自身,那么,它就是非常集,也就不是“不属于自身的集合”,因此,也就不属于自身;如果它不属于自身,那么,它就是平常集,也就恰恰是自身的元素,即属于自身。简言之,如果这个集合属于自身,那么就不属于自身;而如果不属于自身,那么就必须属于自身。怪圈!
  这一悖论简单明了,而且是集合论的基本概念引申出来的。这时,数学王国的臣民们开始惶惶不安起来,因为他们一贯追求严密性,而一旦发现他们自称绝对严密的数学基础——集合论并不严密,竟然出现了“悖论”这种自相矛盾的结果,可以想象他们是多么震惊,多么心慌意乱!一时间,数学王国一片混乱,第三次数学危机到来了。
  德国数学家弗雷格花了25年的时间写成了《算术的基本法则》,正当第二卷要付印的时候,他收到了罗素的一封信,罗素在信中把这一悖论告诉了他,弗雷格就在著作的末尾加了这样的附记:“一个科学家不会碰到比这更难堪的事情了,即在工作完成之际,它的基础突然垮掉了。当这部著作只等付印的时候,罗素先生的一封信就使我处于这种境地。”数学家戴德金原来准备把《连续性及无理数》第三版付印,这时也把稿件抽了回来。他觉得由于罗素悖论,整个数学的基础崩塌了。有的数学家甚至宣布他以前的数学著作全部是“废话”。
  为了有助于人们对罗素悖论的理解,1918年罗素又用“理发师悖论”进行了通俗的解释。
  西班牙的塞维利亚村只有一个理发师,自夸无人可比。他给自己的小店立了一条店规:“我给且只给村里不给自己刮胡子的人刮胡子。”他把此店规用一个牌子写出来,并把它挂在小店的墙上。小店开业后,顾客盈门,理发师当然喜不自胜。顾客们只管刮胡子,对其店规也都没大在意。然而有一天,理发师自己感到迷惑了:谁给他自己刮胡子呢?
  如果他自己刮胡子,那么他就属于自己刮胡子的那类人,但是他的招牌说明他不给这类人刮胡子,因此他不能自己来刮。
  如果他不给自己刮胡子,而由另外一个人给他刮,那么,他就属于“不给自己刮胡子”的那类村民,但是,他的招牌却明明说,这类村民的胡子应该由他给刮。因此,其他人不给他刮胡子,他的胡子只能自己刮。
  属于“自己刮胡子”的则属于“自己不刮胡子”的;而属于“自己不刮胡子”的,则又属于“自己刮胡子”的。不刮,该刮;刮,不该刮……可怜的理发师陷入了神秘的怪圈而不能自拔了。
  排中律说,一个元素要么属于某集合,要么不属于。而这里却说属于不行,不属于也不行,总是矛盾的,怎么办呢?
  、有人说,干脆理发师也不要讲卫生了,他的胡子就让它长着永远不刮算了。但这也行不通,因为这样的话他就又属于自己不刮胡子的那类村民了,按规定仍需自己刮。理发师说:“我就是不刮,你能拿我什么办法?”这当然可以,但他的店规就不能执行了。那么,请别村的理发师替他刮呢?也不行,这情形同上是一样的。有人说,给这位理发师施行现代手术,消除他脸上的毛囊,不让他长胡子,但这就近乎抬杠了。
  西方的一些逻辑学家则采用了康托尔的,也是过去人们常使用的方法——反证法。“矛盾即荒谬。”既然由假设导致了“既要自己刮胡子又不能自己刮胡子”的矛盾,因此,假设必然是不成立的,也就是说,“给且只给那些不给自己刮胡子的人刮胡子”,这种塞维利亚理发师是不存在的。塞维利亚的理发师不是塞维利亚男人,他可能是塞维利亚的女人或孩子,或者是其他地方来这里谋生的男人。如果他是塞维利亚男人,他不能不折不扣地实行自己的规定,世界上总会有许多不一致的政令、法律和制度等。因此,这里并没有悖论,困难只是表面的。
  但是,这些解释完全误解了罗素的意思,他只不过想用通俗的方式说明罗素悖论。因此,塞维利亚村的这位理发师不但不是女人和孩子,而且还是个不断长胡子从而必须经常刮的男人。为了使人信服,罗素指出他的悖论还可以用逻辑的术语表示出来。
  形容词可以分为两类:一类是这种形容词所表示的性质可以适用于形容词自身,比如“黑的”这个形容词本身就是黑的,所以它就适用自己。“四个字的”这个词本身也是四个字的,因此它也可以用来形容自身。又如“用汉语表示的”,既可以用来形容“一目了然”、“至高无上”等这些词,同时也可以用来形容自己,这种形容词称为“自状的”。而另一类形容词所表示的性质则不能形容自身,即它不具有自身所代表的性质,这种形容词称为“非自状的”。例如,“英文的”本身是汉语的,而不是英文的,它不能形容自己。“无意义的”自身是有意义,它并不适用于自己,所以也是非自状的。
  但是,“非自状的”本身也是一形容词,那么,它是属于自状的一类,还是属于非自状的一类呢?
  如果说,“非自状的”这一形容词是自状的,也就是说,它所表示的性质适用于自身,而它所表示的性质就是非自状的,因此,“非自状的”是非自状的。
  如果说,“非自状的”这一形容词是非自状的,就是说,它所表示的性质可以适用于自身,据定义,它又是自状的。
  自状就是非自状的,非自状的就是自状的,循环不已。
  这一悖论是由格雷林提出的,故称“格雷林悖论”。
  如果嫌“自状的”、“非自状的”不太清楚,你还可以换成其他的说法,比如“符合自己的”、“不符合自己的”。现在句,“不符合自己的”符合不符合自己?如果符合自己,那么正好说明它是不符合自己的,而如果不符合自己,则又是符合自己的。
  理发师悖论中的理发师可以说不存在,或者说他的店规是不能实现的,但形容词总有能不能适用于自己的问题,而非自状的”作为一形容词也有是否适用于本身的问题。任何东西总有符合不符合自己的问题,而对“不符合自己的”也就可以问是否符合自己。“非自状的”、“不符合自己的”这些形容词显然存在,看来,悖论是不可避免的了。
  十、我受骗了--语言分层理论
  美国逻辑学家雷蒙德·斯穆里安曾经讲过这样一个故事:
  1925年4月1日,6岁的我曾卧病在床,传染上了流感或诸如此类的什么病。一大早,大我10岁的哥哥埃米尔跑进我的卧房说:“喂,弟弟,今天是愚人节。你向来没让人骗过,今天我要骗骗你啦!”那一整天我都等着他来骗,而他却不动声色。深夜,我妈妈问我:“你怎么还不去睡呀?”我回答她说:“我在等哥哥来骗我。”妈妈转身冲哥哥:“埃米尔,你就行个好,骗骗这孩子吧!”哥哥这才调过脸望着我,跟我对上话了:
  他:这么说,你是盼我骗你喽?
  我:是啊。
  他:可我没骗吧?
  我:没有啊。
  他:而你是盼我骗的,对不?
  我:对啊!
  他:这就行了,我已经把你骗了!
  嘿,至今我还记得,关了灯好久我还躺在床上寻思自己是不是真的受骗了。一方面,如果没有受骗,那么我就没有盼到我所盼的事,因此我受了骗。埃米尔抱的正是这个理儿。不过,同样可以理直气壮地说,如果我受了骗,那么,第二只手,但第三只手必须画在第三张画布上,依次类推。
  我们所使用的日常语言就是一类似于画画的双手的封闭语言。因为在其中,我们可以用命题A描述命题B的真假情况,而又可以用命题B描述命题A的真假情况,也就是说,可以相互描述。当然,命题A也可以描述自身,即自我描述。然而,在这种条件下,只要假设(T)等式是成立的,就立即可构造悖论。
  现考虑这样的命题:
  “本页第18行的那个命题不是真的。”
  现在令C代表本页第18行的那个命题。
  据C的意义,C是上述命题,同时又可代入上述命题的前半部分,这样自然有:
  (1)“C不是真的”等同于C;
  但据(T)原则又有
  (2)“C不是真的”是真的,权且仅当C不是真的。
  由(1)和(2)可得:
  (3)C是真的,权且仅当C不是真的。矛盾。
  “说谎者悖论”(“我在说谎”)可据同样的方式构成。因为“我在说谎”等同于“我在说的话是假的”或“我在说的话不是真的”,只要用C代表“我在说的话”即成。
  塔斯基认为这些悖论的出现是因为在封闭的语言中,语言的层次是混淆的。为了得出真理的令人满意的定义,避免悖论,塔斯基采取了语言分层的理论。
  塔斯基指出,在讨论语言意义的问题时,我们应当使用两种不同的语言,其中第一种是被讨论的语言,即讨论的对象,这种语言称为对象语言。用以讨论第一种语言的为第二种语言,这种语言称为元语言。例如:我们可以用汉语讨论英语的语法,如构词法、句子结构及时态等等,这时英语为对象语言,而汉语为高一级的元语言。当然,我们也可以用汉语讨论汉语,这时汉语既是对象语言又是元语言,但其中的层次不同。又如,我们可以讨论一个命题的真假情况,这时,命题本身如“华盛顿是美国第一任总统”为对象语言,而讨论时使用的命题“‘华盛顿是美国第一任总统’是真的”则属于元语言。在对象语言中,命题本身不能涉及自己的真假问题,为了谈论用对象语言表述的句子的真或假,我们必须使用元语言,即比所说明的语言更高一层的语言。元语言包括了所有的对象语言。因此它比对象语言更丰富,它可以谈论对象语言的真实性。
  那么,我们能不能谈论元语言中命题的真实性呢?当然能。不过,这时需要进到更高一层的元语言,也就是用更丰富的即包括了它以下的对象语言的语言说话时才能做到。每一层语言相对于它下面一层的语言来说为元语言,而相对于它上面一层的语言来说则又成为对象语言。
  初中的平面几何中有这样一条定理:“一直线的垂线与斜线必定相交。”那么,为什么它是一条定理?有何根据?我们要对它进行讨论,引用已知的一些定理、定义等进行证明。这时,定理本身为对象语言,而讨论、证明时所有的语言则为元语言。例如,我们可以这样证明:
  已知:如图8,在平面内
  (1)直线a是L的垂线,
  (2)直线b是L的斜线。
  求证:a、b必定相交。
  证明:假定a、b不相交,
  ∵a、b在同一平面内,
  ∴a∥b(a平行于 b),
  ∴ ∠1=∠2
  又∵a是L的垂线,
  ∴∠2=90°,
  ∴b是L的垂线。
  而这与已知条件矛盾,故假设不能成立,定理得证。但是,我们也可以对这一证明的真假、形式等进行讨论,说明这种证明是正确的,它使用的形式是反证法。这时证明又成为对象语言,而关于证明的理论又是用更高一层的元语言写成的。当然,我们也可以用更高一层的语言对证明的理论进行研究,等等。
  根据语言分层理论,“说谎者悖论”完全可以避免。“我正在说的话不真”,这句话可以用A表示,A语句既然是讨论一个句子的真假情况,那么可以把它看成元语言。而“我正在说的话”就是这一元语言讨论的对象语言,我们可以用B来表示,因此,A就等于“B不是真的”。这里的B可以用一些句子代替,如“张三打了人”、“这些人都戴眼镜”等等,但却不能用A代替。因为A是元语言中的句子,与B不属于同一层次。这样就避免了A说自己不真的问题,悖论也就不会出现。同理,“非自状的”这一形容词能用来描述各个具体的非自状的形容词,如“白色的”、“不能理解的”等等。这些具体的形容词属于对象语言,“非自状的”则属于元语言。但“非自状的”自身不能描述自己,否则就混淆了元语言和对象语言的层次。这样也就不能问“非自状的”是否非自状的问题,悖论就得以避免。
  斯穆里安搞不清楚他的哥哥是否骗了他,这是因为他哥哥的话造成了悖论。但这个悖论又是如何形成的呢?他哥哥说:“我要骗骗你啦!”这句话是用来说明他要骗斯穆里安的行为的,因此这是元语言的句子,但从以后的结果来看,他说这句话却是指的自身,就是说“我要骗骗你啦”本身就是欺骗行为,这样就混淆了语言的层次,所以才造成了悖论。按照语言分层理论,只有在一天中具体进行了其他欺骗(正如斯穆里安所希望的),“我要骗骗你啦”才有意义,而在这种情况下也就不会出现悖论。
  这种语言层次的混淆使我联想到中国的一段传统相声:
  甲:旧时候中国人有好多忌讳。
  乙:有什么忌讳呢?
  甲:比如新婚夫妇在头天晚上入洞房后是不能说话的,谁先说话谁先死。但我大爷就不信这一套,他说他结婚时一定能使新娘子先说话。
  乙:人家能信吗?
  甲:不信,不过我大爷和他的一个拜把子兄弟打了一个赌。
  乙:打什么赌呢?
  甲:我大爷如果能让新娘子先说话,说一句他的小兄弟给10块大洋。
  乙:新娘子说了没有?
  甲:说啦!那天晚上我大爷进洞房时,新娘子已经睡下了,他上床后就把被子横了过来,新娘子就把它竖了过去。我大爷又把它横过来,新娘子又竖过去。如此几个回合,新娘子急了,说:“你这个人,怎么回事?”我大爷高兴了:“一句啦!”“什么‘一句啦’?”新娘子不知原故,问道。“两句啦!”“什么‘两句啦’?”新娘子继续问。“三句啦!”我大爷更来劲,新娘却更摸不着头脑:“你这人怎么啦,什么‘三句’、‘两句’的?”这时,蹲在窗外偷听的那位小兄弟急了,忙叫道:“大哥,别喊啦,我只有40块大洋!”
  读者朋友,你又能从这段相声中悟出些什么道理呢?”
  八、重温旧梦-悖论的解决
  据《圣经》上说,人类的始祖亚当和夏娃因偷吃禁果被逐出伊甸园,于是他们在凡间生儿育女,逐渐繁衍起来。后来他们的后代发现了一片广袤的原野,决定住下来,准备在那里建一座城,城里建一座塔,塔顶通天。大家此呼彼应地说着话,热火朝天地干起来,做坯的做坯,烧砖的烧砖,和泥的和泥,运料的运料,建塔的建塔,那塔直入云霄。这件事惊动了上帝,耶和华亲临现场,看到平地上、塔顶上人们川流不息地传运着砖料和灰泥,从下往上层层传递,有条不紊,越砌越高。
  耶和华对天使说:“看哪!他们如此协调一致,如今建塔,往后做起别的事来,就没有不成的了。看来得使他们语言彼此不同”于是,他就让建塔的人们说出各种各样的语言,每个人说话只有身边的几个人懂得,稍远一点就听不懂了,塔顶上的人向下边喊话,震破了嗓子下边的人也不知他们到底要什么,打手势也不管用,因为缺乏统一的规定。由于语言不通,停工待料,人们的心随之逐渐涣散,那座塔也就半途而废了。
  耶和华把众人分散到各地,遍布天涯海角,从此世间便产生了成百上千种语言,各种语言中又有各种方言。
  半途而废的原因是语言的变乱,“变乱”在希伯莱语中读作“巴比伦”,因此人们就把这座塔称为“巴比伦塔”。
  经过2000多年的努力,20世纪初人们逐渐构造起了数学的庞大体系。在这个体系中,每个结果都依赖于以前已经取得的成果,这非常像一个层层叠叠的巴比伦塔式的建筑物。在这个建筑物中,当时主要有算术、代数、几何、数学分析等几大阶层。第一次数学危机使自然数的尊崇地位受到挑战,人们开始认识到无理数的意义,同时也意识到直觉和经验不一定靠得住,从而导致古典逻辑和欧氏公理几何学的诞生。随着第二次数学危机的解决,微积分(数学分析的一部分)建立在极限理论的基础上。而要理解极限的性质,就必须对数有明确的概念。这里的数不仅指有理数,而且还包括无理数,这两种数构成了实数的集合,因此当务之急是建立严格的实数理论。康托尔通过一定的有理数序列定义实数,而戴德金则利用有理数集合的分割来定义实数,就是说他们都依赖于有理数的集合概念。这样,实数理论的无矛盾性就归结为有理数论进而归结成自然数论的无矛盾性了。
  自古以来,大家都认为自然数的算术是天经地义的。不过数学家们又把它进一步归结为逻辑与集合论,也就是用逻辑和集合论推出自然数,这样,逻辑与集合论成为整个数学大厦的基础。在这个建筑物的构架中,如果有一个小框架电现了一点裂缝,并不会使整个大楼倒塌,但是如果它的基石崩溃了,你可以想象会是什么样的结果!
  从历史的发展来看,罗素悖论的发现对人们的震动是巨大的。因为这种威胁不仅限于集合论,而是涉及整个数学,甚至还包括逻辑。因为只需稍作变动,罗素悖论就可以在纯逻辑的形式下得到构造,如上述的格雷林悖论。
  那么,为什么2000多年来的悖论对逻辑、数学没有产生根本性的威胁,而现在却像爆发了一场大地震,使许多人大惊失色、惊愕得说不出话来呢?这是因为过去的悖论或依赖于某些具体的事实,或者主观认识上的错误。例如,“说谎者悖论”要依赖于说话的人为克里特岛人。人们可以说悖论的出现只是表明所假定的事实不能出现,不过是一幻想,也可以说这样的话毫无意义。“希帕索斯悖论”的出现,是由于毕达哥拉斯学派坚持“一切事物和现象都可以归结为整数或整数之比”的信条造成的,由于人们未能认识这一信条的相对性(即在一定范围内适用),

没有相关内容

欢迎投稿:307187592@qq.com news@fjdh.com


QQ:437786417 307187592           在线投稿

------------------------------ 权 益 申 明 -----------------------------
1.所有在佛教导航转载的第三方来源稿件,均符合国家相关法律/政策、各级佛教主管部门规定以及和谐社会公序良俗,除了注明其来源和原始作者外,佛教导航会高度重视和尊重其原始来源的知识产权和著作权诉求。但是,佛教导航不对其关键事实的真实性负责,读者如有疑问请自行核实。另外,佛教导航对其观点的正确性持有审慎和保留态度,同时欢迎读者对第三方来源稿件的观点正确性提出批评;
2.佛教导航欢迎广大读者踊跃投稿,佛教导航将优先发布高质量的稿件,如果有必要,在不破坏关键事实和中心思想的前提下,佛教导航将会对原始稿件做适当润色和修饰,并主动联系作者确认修改稿后,才会正式发布。如果作者希望披露自己的联系方式和个人简单背景资料,佛教导航会尽量满足您的需求;
3.文章来源注明“佛教导航”的文章,为本站编辑组原创文章,其版权归佛教导航所有。欢迎非营利性电子刊物、网站转载,但须清楚注明来源“佛教导航”或作者“佛教导航”。
  • 还没有任何项目!
  • 佛教导航@1999- 2011 Fjdh.com 苏ICP备12040789号-2

    办公地址:北京昌平区望都新地南区18号楼三单元501室 办公电话:010-81754277